

Adrian Eggenberger
Senior Software Developer

Arendi AG

Eichtalstrasse 55
CH-8634 Hombrechtikon

www.arendi.ch

Advanced Bluetooth Low

Energy Development

Bluetooth SIG is increasing the scope of possible applications for

Bluetooth Low Energy day by day. Many companies worldwide have

already made their first project experience with Bluetooth Low

Energy.

The range goes from prototypes to market ready products. It’s the

right time to lift your Bluetooth development to a higher level.

Using the right tools and skills can significantly improve the time to

market, the robustness, the security and the power consumption.

This paper will highlight three possible aspects of a development

cycle and will give the reader ideas for improvement in their own

projects.

1. Introduction
“We have a good product, but we need

connectivity with the smart device!” This

sentence is often the beginning of new

Bluetooth Low Energy (BLE) projects. Many

companies started with BLE development

within the last years. This article points out

some potential for improvements for

upcoming Bluetooth Low Energy projects.

We focus on three topics:

 Device-Simulation for enhanced

debugging and availability

 Real-Time Analysis to reduce power

consumption

 System-Tests to improve stability and

robustness

The examples and proposed ideas in this

article are all based on the “Arendi BLE

firmware platform”. It’s running on a nRF52

chip from Nordic Semiconductors with an

ARM Cortex-M4. For demonstration purpose

an Arduino LCD panel is attached to the

nRF52 Development Kit. The system runs on

our own cooperative scheduler.

Development improvement proposals in this

article can also be applied to most other

systems.

Figure 1 - Real Device (Left Side) versus Simulated Device (Right Side)

Page 2

2. Device Simulation
In a project years ago our company faced

some serious problems with hardware

availability. The first prototype boards were

late and the firmware team was limited to

development without any hardware. This

was when the device simulation concept was

born. The team started to write an

environment for desktop computers that

emulates the behavior of the real hardware.

Over time the simulated environment was

adapted piece by piece to the needs in the

current projects. Today we have a simulation

that behaves nearly as equal as the real

hardware (Figure 1).

On the left hand we have a photo of the real

device. On the right hand a screen shot of

the simulated version of the same device

built with Microsoft Visual Studio 2015 and

running on a x86 computer as WPF-

application.

Concept

In a typical embedded device most of the

software parts are not directly accessing the

hardware. It’s basically good practice to keep

the platform specific stuff in small layers (e.g.

Hardware Abstraction Layers).

Figure 2 shows the difference in the

architecture between the real device and the

simulated one. Most of the files running on

an embedded system can run in a simulated

environment without any changes. Only a

small layer at the bottom with hardware

access needs to be replaced with simulation

specific files. These simulation modules

emulate the real hardware as real as needed.

In our example from above the hardware

simulation is realized with a UI for

visualization and is quite complex. The

required simulation complexity may vary

from project to project. In some cases, a

simple console frontend may be sufficient.

What about BLE?

A simulated BLE device would never live up

to the real world, to real challenges of a

wireless technology. Therefore, we don’t

simulate the BLE part but route it to an

external BLE device. So the BLE part is not

really simulated, it’s just exported to an

external BLE device.

Figure 2 - Target and Simulation Architecture

Page 3

The calls to the BLE hardware are packed into

an UART protocol and sent to a connected

BLE dongle. This dongle is programmed with

a firmware that decodes the protocol and

executes the calls on the real BLE chip. The

responses and spontaneous events are sent

back over UART to the simulation (Figure 3).

How to implement BLE for a simulated device

highly depends on the selected BLE solution.

In some cases, the stack runs completely in

hardware and can’t be simulated. That

would require a different solution as when

the stack is available in source code and can

run in the simulation.

Advantages

Availability

The availability of the hardware becomes less

important. If the hardware is not yet working

or only available in limited numbers or you

don’t have access to it at your alternative

working place you can always work with the

simulated device.

Enhanced debugger

The debugger of target development

environments is often limited. Desktop

development environments as we are using

in our simulation, allow a deeper view in the

system as the target environments.

Hardware Failures

If your firmware needs to handle very rare

hardware conditions, it could be hard to

trigger and test the implementation in these

cases. A simulated device gives you the

option to force the failed situation and test

how your system reacts.

System Knowledge

Getting diagnostic information of a target

system may be hard. Limited interfaces and

bandwidth reduces the possibilities for data

output. The simulation runs on a fast system

and is not limited in debug outputs nor in

data storage.

Figure 3 - BLE Support in simulated devices

Page 4

3. Real-Time Analysis
A lot of Bluetooth Low Energy devices are

powered by a battery and expected to be

running 24/7 for many years. Using BLE is a

good start as the technology gives you all the

options you need for long battery life. Most

people setup their communication correctly

but waste power in the data handling. Real-

Time Analysis is a general topic in embedded

software development but it’s absolute

important in battery powered

communication devices.

These questions are often difficult to answer:

How many times was the

interrupt service routine called?

Which processes are active in my

system?

How does the OS behave?

How long does my data handling

take?

Why is Real-Time Analysis

important?

In battery driven devices any optimized real

time behavior may increase battery life by

months or even years. Figure 4 shows a

typical example for a BLE device.

The device is connected and gets some data

every second. To maintain the active BLE link

only a few micro amperes are required, but

the handling of the incoming data requires

some CPU power. With the shown power

profile, the device would run approximately

2.4 years on a CR2032 coin cell. If you are

able to reduce the data handling time by

20% (=200us) the battery life would increase

up to 3 years.

Classic methods

There are a few well known methods for

system analysis. They have all their

advantages, but also some disadvantages.

Method Disadvantage

Debug output

to a terminal

Hugh influence on system

timing

Requires an unused output

interface (e.g. UART)

Time

measurements

by GPIO

Only dedicated

measurements

Requires free and

accessible GPIO pins

Debugger

Breakpoints

Only dedicated

measurements

Often not usable in

combination with RF

protocols as BLE

Figure 4 - Typical current profile of a BLE device

Page 5

Segger SystemView

While the classic methods are still useful for

various measurements we’ve added an

additional method to improve our tools for

system analysis. Segger SystemView is a free

tool provided by SEGGER Microcontroller

that works with J-Link debuggers from the

same company. SystemView may be used

with ARM Cortex and Renesas RX series.

Concept

The concept of SystemView is simple. In the

normal firmware calls to the SystemView API

can be added for interesting events. These

calls result in fast write operations to a

dedicated circular buffer in the target with

minimal impact to the real time behavior and

code size. The J-Link debugger will

continuously ready the data from the circular

buffer and send the events to the

SystemView application for visualization.

Analyze your system

The provided application for SystemView

visualization allows you to see the logged

event. By adding the corresponding events to

your OS or using an OS already supported by

SystemView, the task switching and event

processing can be visualized as well.

The snapshot in Figure 6 shows a RTC

interrupt that triggers an event sent to the

PWR and BLE process.

Figure 5 - SystemView concept

Figure 6 - SystemView visualisation

Page 6

4. Automatic Testing with BLE
Everyone knows that it would be a good

thing to run automatic tests on a regular

basis. In practice a lot of companies release

products without an implementation of

automatic testing. There exist multiple types

of tests that can be done automatically:

Unit testing

A unit test (also known as component test)

verifies the functionality of a single module

or component.

Integration testing

The integration test verifies that modules in

the device work together as expected. They

focus on the interfaces between modules.

System testing

The system test is a test of a complete

integrated system. Typically, the system

requirements and system interfaces are

covered by this test.

In this paper we focus on the testing of

Bluetooth Low Energy. The BLE interface is a

typical external system interface of a device.

Therefore, BLE should be covered by a system

test.

System-Test setup

System tests are typically executed by a test

framework. Which framework is the best for

your environment depends on various

factors:

 Platform of the test system

 Test script language

 Support for existing software

components

 Knowledge of already used

frameworks

In our case we have chosen NUnit because it

fits well with our other C# components and

works perfectly on our development

computers and servers.

In a traditional system test setup, you have a

test script that has a few options for

information exchange with the device under

test (DUT). There could be a communication

protocol or a direct hardware access to a

modified DUT (e.g. pressing buttons, get led

state or even more).

To add support for BLE we add a “nRF51

Dongle” from Nordic Semiconductors to the

test system. The dongle can be accessed by a

serial protocol (see also the section What

about BLE? at page 2). The dongle will act as

the counterpart of the DUT. If your DUT is

implementing the Peripheral Role for

example the dongle will implement the

Central Role that connects to the peripheral.

Figure 7 - System-Test setup for BLE tests

Page 7

Writing tests

The typical test framework allows to

implement code for test setup and test

teardown. The setup function should be used

to setup communication with the DUT and

the BLE dongle. In the teardown function the

communication with DUT and BLE dongle

can be terminated. For best reproducibility

it’s recommended to reset the DUT before

any test to ensure equal conditions for every

test run.

In Figure 7 two library components are

placed between test script and interfaces.

The libraries provide simple functions for the

scripts to access the corresponding

interfaces. This will help to keep the test

scripts as short as possible and prevent

redundant code in multiple test scripts.

The script example (Figure 8) shows a test

that tries to discover the DUT by scanning for

it over BLE. Once detected it is connected and

all services discovered. The battery value is

read by accessing the battery service

characteristic and verified if it is within a valid

range. To complete the test, the device is

disconnected. In the test script there is no

error handling (e.g. if the DUT couldn’t be

detected) because any unexpected behavior

will terminate the test with an error caused

by a thrown uncatched exception.

Scripts as the discussed one are a good start

but you may have noticed, that we don’t

communicate with DUT except over BLE. This

is only possible if the DUT is always in the

right state and advertises as connectable

device. In a more complex scenario it may be

required to force the DUT into a certain state

by triggering a button on the DUT or sending

some commands over the communication

interface.

Running test

Once you have written a bunch of tests it’s

time to setup the automatic testing. It is

recommended to execute the tests by a build

management system. If you don’t want to

setup a build system a regular executed script

may work as well. The following steps should

be executed at least once per night to create

and test the nightly build for your device.

1) Checkout a clean copy of the projects

2) Build the nightly firmware build

3) Build the system test project

4) Program the nightly build on the DUT

5) Run your system tests

6) Notify one or multiple team members if

some of the tests fail

Figure 8 - Script to read battery voltage over BLE service

Page 8

5. Conclusion
The proposed methods may give you some

options how you could improve your

development in different project stages.

Caused by various development

environments and hardware setups the

proposed methods must be adapted to the

actual project. Implementing these methods

will be time consuming for the first project

but you’ll get a lot better product quality and

performance at the end. Upcoming projects

based on the same environment will benefit

automatically from this investment with

minimal cost.

Adrian Eggenberger, October 2016

	1. Introduction
	2. Device Simulation
	Concept
	What about BLE?
	Advantages
	Availability
	Enhanced debugger
	Hardware Failures
	System Knowledge

	3. Real-Time Analysis
	Why is Real-Time Analysis important?
	Classic methods
	Segger SystemView
	Concept
	Analyze your system

	4. Automatic Testing with BLE
	System-Test setup
	Writing tests
	Running test

	5. Conclusion

